Neue G-Phasen

(Kurze Mitteilung)

Von

E. Ganglberger, H. Nowotny und F. Benesovsky

Aus dem Institut für Physikalische Chemie der Universität Wien und der Metallwerk Plansee A.G., Reutte/Tirol

(Eingegangen am 16. Februar 1966)

G-Phasen wurden bisher vorzugsweise bei Siliciden, in der Folge auch bei Aluminiden und Berylliden beobachtet¹. Ebenso ist eine erhebliche Zahl von Germaniden dieses Typs bekannt geworden². Neben weiteren neuen Berylliden und Aluminiden vom allgemeinen Typus $T_6^{IV}T_7^{VIII}Al_{16}^3$ konnten nunmehr derartige Phasen auch bei Zinkiden aufgefunden werden. In Tab. 1 sind ihre Gitterparameter angegeben.

Phase bzw. System	a	System	a
Zr ₆ Pd ₈ Be ₁₅	11,25	Zr—Ru—Al	12.40_{0}
$\mathrm{Hf_6Pd_8Be_{15}}$	11,20	ZrRhAl	$12,32_{3}$
$\mathrm{Hf_6Cu_8Be_{15}}$	11,08	Zr-Pd-Al	$12,40_{7}$
$Zr_6Cu_7Zn_{16}$ (Ansatz)	12,10	Zr—Os—Al	$12,40_{9}$
$Hf_6Cu_7Zn_{16}$ (Ansatz)	12,01	Zr—Ir—Al	$12,33_2$
Ti-Ru-Al	$12, 18_5$	Zr—Pt—Al	$12,33_{5}$
Ti-Rh-Al	$12, 13_{5}$	Hf— Rh — Al	$12,27_8$
Ti-Pd-Al	$12,23_2$	Hf—Pd—Al	$12,31_4$
Ti-Os-Al	$12,22_2$	Hf—Os—Al	$12,27_8$
Ti—Ir—Al	$12,15_4$	Hf—Ir—Al	$12,29_1$
Ti-Pt-Al	11,98*	Hf— Pt — Al	$12,28_{6}$

Tabelle 1. G-Phasen und Gitterparameter (in Å)

* getempert

¹ Vgl. E. Ganglberger, H. Nowotny und F. Benesovsky, Mh. Chem. 97, 219 (1966).

² E. I. Gladishevsky, W. I. Markiv und Ju. B. Kusma, Dopovidi Akad. Nauk Ukr. No. 4, 481 (1962).

³ T =Übergangsmetall

830 E. Ganglberger, H. Nowotny und F. Benesovsky: [Mh. Chem., Bd. 97

Danach sind offensichtlich mehrere *B*-Elemente, nämlich Be, Zn; Al; Si und Ge, befähigt, *G*-Phasen in metallischen Dreistoffen zu bilden. Magnesium tritt bereits als großes Atom an die Stelle des Übergangsmetalls der 3a-, 4a-, 5a- (6a-) und 7a-Gruppe. Interessant ist die verschiedene Aufteilung der Partner über die Positionen der Th₆Mn₂₃-Struktur; ein derartiger Fall ergab sich bei Ta₆Cu₈Be₁₅⁴. Bei den Aluminiden liegt abermals eine andere Besetzung vor, weil eine befriedigende Übereinstimmung in den Intensitäten für Hf₆Ni₇Al₁₆ (Tab. 2) nur mit folgender Aufteilung zu erreichen ist:

24 Hf in 24 e)	x = 0,196
28 Ni in 4b)	
und $24d$)	
64 Al in 32f)	x = 0,167
und $32f$)	x = 0.375

Der Austausch von Ni gegen Al und von Si gegen Ni in der Phase $Hf_6Ni_{16}Si_7^2$ ist bemerkenswert; danach drückt sich der metallische

(hkl)	$10^3 \cdot \sin^2 \theta$ beob.	10 ³ • sin ² θ ber.	Int. beob.	Int. ber.
(111)	27,2	27,3	m	11,8
(200)	36,4	36,4	— m	5,5
(220)	73,2	72,8	s	4,2
(311)	100,7	100,0	SSS	1,6
(222)	110,0	109,2	s	7,0
(400)	145,2	145,6	m	17,8
(331)	173,3	172,8	\mathbf{m}	18,0
(420)		181,9		1,1
(422)	219,0	218,3	\mathbf{m}	16,0
(511) (333)	245,5	245,6	\mathbf{st}	${15,4}{15,8}$
(440)	290.3	291.1	m-st	24,2
(531)		318,4	-m Koir	n. 0,7
(600) (442)	327,4	327,5	m Koin.	${3,6}{0,2}$
(620)		363,9		0,1
(533)		391,2		0,5
(622)	_	400,3		0,3
(444)		436,7	·	1,2
(711) (551)	463,4	464,0	m	$ \begin{cases} 0,3\\ 8,3 \end{cases} \\$

Tabelle 2. Auswertung und Intensitätsberechnung von ${
m Hf_6Ni_7Al_{16}};~{
m CrK}\,\alpha$

⁴ E. Ganglberger, H. Nowotny und F. Benesovsky, Mh. Chem. **96**, 1206 (1965).

Fortsetzung (Tabelle 2)

(hkl)	$10^3 \cdot \sin^2 \theta$ beob.	$10^3 \cdot \sin^2 \theta$ ber.	Int. beob.	Int. ber.
(640)	473,8	473,1	+ s	2,7
(642)		509,4		0,6
(731) (553)	536,6	536,7	m	${6,9 \\ 0,8}$
(800)	581,7	582,2	s	2,8
(733)	609,1	609,5	\mathbf{m}	10,0
$(820) \\ (644) $	619,3	618,6	SS	${ 1,9 \\ 1,2 }$
(822) (660)	656,0	655,0	\mathbf{st}	${ \hat{12,0} \\ 4,4 }$
(751) (555)	682,4	682,3	m	1,9 5,0
$(662)^{'}$	692,1	691,4	SS	`1,9
(840)	727,5	727,8	SS	2,1
$(911) \\ (753) \}$	756,0	755,1	s	$ \begin{cases} 0,7 \\ 3,7 \end{cases} $
(842)	763, 5	764,2	\mathbf{st}	11,6
(664)	800,9	800,6	ss	1,0
(931)	~~~~	827,8		0,2
(844)		873,3		0,0
(933)				(21,0
(771)	900,4	900,6	\mathbf{sst}	$\{5,8$
(755)				7,7
(10,0,0) (860)	909,6	909,7	— m	${4,4}{0.0}$
(10,2,0) (862)	946,3	946,1	\mathbf{st}	$\{ 5,5 \\ 13,0 \}$
(951) (773)	973,3	973,4	ssst	19,4 27,0
$(\stackrel{(10,2,2)}{_{(666)}} \}$	982,5	982,5	$^{\rm st}$	$ \begin{cases} 1,6\\27,0 \end{cases} $

Tabelle 3. Auswertung und Intensitätsberechnung von ${\rm Hf}_6{\rm Cu}_7{\rm Zn}_{16};~{\rm CrK}\,\alpha$

(hkl)	$10^{\circ} \cdot \sin^{\circ} \theta$ beob.	10 ³ · sin ² θ ber.	Int. beob.	Int. ber.
(111)	27,2	27,3	SSS	5.6
(200)	36,4	36,3	SSS	5.0
(220)		72,7		1.7
(311)		99,9		0,8
(222)	109,2	109,0	m	8,3
(400)	145,2	145, 4	ms	4,2
(331)	172,0	172,6	m	15,2
(420)		181,7		2,7
(422)	219,0	218,1	+ m	18,0

(hkl)	$10^3 \cdot \sin^2 \theta$ beob.	$10^3 \cdot \sin^2 \theta$ ber,	Int. beob.	Int. ber.
(511)	245,5	245,3	sst	<u>∫</u> 22,6
(333)j (440)	200.3	200.8	a+	(24,0
(531)	200,0	318.0	00	0.2
(600))		010,0		(7.0
(442)	327,4	327,1	m	10.4
(620)		363,4		0,1
(533)		390,7		0,6
(622)	399,5	399,8	88	1,3
(444)		436,1		0,0
(711)	169 1	169 1	200	∫0,7
(551)	403,4	405,4	m	(6,9
(640)	472,1	472,5	SS	1,2
(642)		508,8		0,0
(731)	536 6	536.1	m	5,9
(553)∫	000,0	500,1		1,0
(800)	581,7	581,5	m	3,8
(733)	609,1	608,8	\mathbf{m}	9,0
(820)	617,6	617,8	8]],])1.0
(644))	,			(1.9
(822)	654,5	654,2	\mathbf{st}	13,0
(000)]				(4.0
(751)	682,4	681,5	+ m	64
(662)		690.5		0.2
(840)		726.9		0.3
(911))				(0.2
(753)	754,5	754,1	\mathbf{m}	7,5
(842)	763,5	763,2	+ m	12,8
(664)		799,6		0,2
(931)	826,7	826,8	s	2,9
(844)	872,7	872,3	m	9,6
(933)				38,0
(771)	899,3	899,5	sst	$\{ 4,2 \}$
(755)]				2,0
(10,0,0)	908.6	908.6	— m diff.	$\int_{0}^{3,1}$
(860) ∫	000,0	000,0		լ0,4 (7.2
(10,2,0)	944,7	944,9	+ m	17,3
(862) J	- · ,		·	(8,0 (91.0
(991)[(773)[972,2	972,2	st diff.	30.6
(110)]				ر~~,~

Fortsetzung (Tabelle 3)

Charakter von Aluminium gegenüber Silicium in diesen Phasen ähnlich wie beim Beryllium stärker aus, so daß die Zusammensetzung vom Radienverhältnis mit bestimmt wird. Als Beispiel für ein komplexes Zinkid ist in Tab. 3 die Pulveraufnahme für $Hf_6Cu_7Zn_{16}$ ausgewertet, wobei die gleichen Parameter wie für $Hf_6Ni_7Al_{16}$ benützt wurden.